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Abstract. We construct generalizations Pmn (Q) of the partition algebra Pn(Q) (Martin P P
1996 J. Algebra 183 319), facilitating a representation theoretic approach to the n-site transfer
matrix spectrum of a high-dimensional Q-state Potts model with magnetic field and source terms
(and to corresponding dichromatic polynomials). For each Q ∈ C we describe the irreducible
representation theory of the sequence of algebras P∗(Q) ={Pn(Q) ⊂ P 1

n (Q) ⊂ Pn+1(Q)| n =
0, 1, 2, . . .} approaching the large-n limit. For each positive integer Q we extend the Potts model
representation ρn of Pn(Q) to a representation of P 1

n (Q). We show how these Potts representations
embed in the representation theory of the partition algebras. These results together provide a tool
with which to examine the nature of physical correlation functions.

For large n the irreducible content of the Potts representations can be summarized by
CSQ

∼= EndPn(Q)(V
⊗n
Q ) and CSQ−1

∼= EndP 1
n (Q)

(V ⊗n
Q ), where SQ is the symmetric group, and

VQ is the space of states of a Potts spin. We show how the partition algebra formalism matches up
the correlation functions of the Potts model and the corresponding absolute spectrum degeneracies
of its transfer matrix.

1. Introduction

In this paper we consider the characterization by physical observables, and the degeneracies,
of the transfer matrix spectrum in high-dimensional Potts models. An understanding of three-
dimensional Potts models in particular would be of considerable physical interest [16, 25,
27, 45], however, despite important progress toward exact solutions to certain special three-
dimensional models by Baxter and others (see, for example, [4,6,7,41,43,47]) relatively little is
known of the spectrum in the ordinary Potts case†. By general theory the largest eigenvalue is
usually non-degenerate [28, 37] and determines the free energy. Other distinct eigenvalues
correspond, in theory, to distinct physical correlation functions, but it is not necessarily
obvious in general which correlation function goes with which matrix eigenvalue. A physical
characterization of the eigenvalues, together with their multiplicities where degenerate (n.b.,
degeneracies correspond to non-Abelian symmetries of the transfer matrix T ) would be a step
forward.

To be precise, consider the ‘minimal’ multiplicities, i.e. those of eigenvalues which
maintain exact degeneracy even if the nearest-neighbour interaction strengths are slightly
different in a random way from bond to bond (or, for example, randomly bond diluted, cf [38])‡.

† In the search for exact results certain more limited analyses have proved interesting, such as at largeQ [14,46], or
for finite lattices [30, 40] or, essentially equivalently, for perturbation series [18].
‡ A very important class of degeneracies occurs only at a special value of temperature/coupling constant (the vanishing
of the mass gap [25] at a phase transition point, for example). But of course, we do not yet know the critical temperatures
of Potts models above two dimensions.
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For lattice models in general, the minimal multiplicities may have limited direct physical
significance (cf [35], for example). However, in two-dimensional Potts models, where all these
multiplicities are known [5,31], there is a marked difference between the minimal multiplicity
behaviours of models with second- and first-order phase transitions. In the former cases the
transfer matrix algebra [26,32,39] has only a finite number of irreducible representations, each
with finite degeneracy in the thermodynamic limit; in the latter cases there are unboundedly
many highly degenerate irreducibles. By analogy, data on phase structure in three and higher
dimensions could also be revealed by examining degeneracies.

We will speak of directions within the transfer matrix layer as ‘space’ directions, and
that between layers as the ‘time’ direction. In ordinary equilibrium statistical mechanics the
distinction is, usually, for computational convenience only. In this paper we consider very
high-dimensional or (equivalently on the finite lattice) spatial geometry-free models. These
are, in a suitable sense, ‘mean field’ models—recall that spin models at four dimensions
and above are expected to behave like mean field systems [2]. Mean field models are not
necessarily in themselves very physical. However, they are interesting in the Potts case, since
the configuration space V ⊗n

Q of a Potts transfer matrix layer [3] is determined only by the
number of sites n, and not directly by dimension. This means that correlation functions which
can be measured in any dimension can be measured in our model (excepting only that, as usual
in the transfer matrix formalism, arbitrarily large separation of observables is possible only
in the ‘time’ direction). Here the transfer matrix algebra is the image P̂n(Q) of the partition
algebra Pn(Q) [32] on V ⊗n

Q . Note that the natural action of the symmetric group SQ on V ⊗n
Q is

to apply a fixed permutation to all the Potts spin states simultaneously. This action commutes
with the transfer matrix in zero magnetic field (see section 1.1), and in fact

CSQ
∼= EndPn(Q)(V

⊗n
Q ) for n > Q− 1 (1)

(this is easy to show, for example using [24] or [36]). That is, CSQ and P̂n(Q) are in Schur–Weyl
duality [44] on V ⊗n

Q . This fact effectively determines lists of minimal spectrum multiplicities
for the high-d Potts model for all Q ∈ N. However, the technique is formal and it does
not relate multiplicities to physical correlation functions, or address the possibility of higher
multiplicities in specific transfer matrices. In this paper we index the multiplicities using
the generic irreducible representation theory of the partition algebra [33], in terms of which
the physical correlation functions are intuitively clear [32] (we will derive the connection
explicitly), and many of the multiplicity bounds can be shown to be saturated.

These ‘high-d’ data, together with the data for two dimensions, establish a good framework
for attacking the three-dimensional problem, as we will see below. The results are also
interesting in their own right. They provide (1) new algebras Pmn (Q) which enable a fully
algebraic transfer matrix formalism; (2) a determination of the rich exceptional structure of
P 1
n (Q) (using an extraordinary Morita equivalence [22] relating deformation algebras with

different deformation parameters—something long sought in Hecke algebra representation
theory for example); (3) examples of a Jones basic construction [15, 19] as an almost trivial
application of the categorical properties of Pn(Q) [34] to the Potts quotient P̂n(Q); (4) a proof,
usingPn(Q) representation theory, that a large class of transfer matrix eigenvalues have exactly
the representation theoretic degeneracy (i.e. that implied by equation (1)) for any ferromagnetic
specialization of coupling parameters.

This paper is set out as follows. In section 1.1 we establish our notation through a brief
summary of the relationship between transfer matrix spectra and correlation functions. In
section 2 we introduce the new algebras we need. In section 3 we determine the structure
of the new algebra P 1

n (Q) using the known structure of Pn(Q) by category theoretic means
(some physicists may wish to bypass the details, but this really is the most elegant and efficient
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way). We put this result in the specific context of the transfer matrix algebra for the Potts
model with magnetic field in section 4. In section 5 we hence determine the transfer matrix
spectrum degeneracies in the generic Pn(Q) framework in all cases, and use the Perron–
Frobenius theorem to determine stronger bounds on these degeneracies. In section 6 we
make some general remarks about a possible larger setting for, and extension of, this work.
Technical results present only for their intrinsic interest are relegated to the appendixes. Thus
representation theoretic results in appendix A.1 lead us, in appendix A.2, to exhibit a Jones
basic construction (cf [15, 19] and references therein) on P̂∗(Q).

A warning is in order concerning the level of algebraic machinery employed in this paper.
While every opportunity is taken to make contact with the underpinning physical model, we
believe that not all of the nuts and bolts calculations are best conveyed in traditional physics
language. And while the machinery employed is modest by modern algebraic standards, it is
likely to require (of those who have not already done so) reading of at least some of the cited
texts. The alternative would be a much longer paper [1]†.

1.1. On physical correlation functions

For H a graph let EH denote its edge set and VH its vertex set. Define graph Al by
VAl = {1, 2, . . . , l} and EAl = {{i, j}|i − j = ±1}. From [12], let G = H × Al be given by
VG = {(a, b)|a ∈ VH , b ∈ VAl } and {(a, b), (c, d)} ∈ EG if either a = c and (b, d) ∈ EAl
or b = d and (a, c) ∈ EH . Recall [3] that the Q-state Potts model is a model of classical
equilibrium statistical mechanics in which the spins si take values from {1, 2, . . . ,Q} and lie
on the sites of a crystal lattice, which is typically a graph of the form G = H × Al . Ab initio
H , called the layer graph of G, can be any graph. The Hamiltonian is

HPotts =
∑

(i,j)∈EG

βij δsi ,sj +
∑
i∈VG

hiδsi ,1. (2)

The homogeneous isotropic partition function [32] in zero magnetic field is usually written

ZG(β) =
∑
{s}

exp(HPotts(βij = β, hi = 0))

(where {s} denotes all spin configurations) and the free energy per site is

FG(β) = 1

l · n lnZG(β)

where n = |VH |. For M a matrix let 〈〈M〉〉 denote the sum of its entries. Then if T is the
usual Potts transfer matrix ( [3, 25], and see section 4) associated to layer graph H we can
write ZG(β) = 〈〈T l〉〉 (we are glib about boundary conditions for brevity’s sake). Thus in the
thermodynamic limit of l we have FG(β) = κ ln(λ0(β)), where κ is a constant and λ0 is the
(usually unique) largest eigenvalue of T .

An observable  is a function of the configuration of some finite set of spins, and its
expectation value is

〈 〉 :=
∑

{s} exp(HPotts(β))

ZG(β)
.

Suppose we have a set of spins localized in the neighbourhood of some point x ∈ VG (metrical
notions onG are discussed in [32] section 1.2). A correlation function typically measures the
rate of decrease with separation r of the degree of correlation (in the statistical mechanical
sense—again see [32]) between the configuration of one such set of spins and that of another.

† This paper is in part an abbreviated version of [1], and greater detail on some points may be found there.
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For example, the simplest correlation function measures the r dependence of the propensity of
two spins, distance r apart, to be coaligned. In transfer matrix formalism (with β dependences
implicit) correlation functions may appear in the form

f (r) = 〈〈T l1O( )T rO( )T l2〉〉
〈〈T l〉〉 (l1 + r + l2 = l; l1, l2 � r � 1) (3)

where O( ) is a diagonal matrix which simply assigns the appropriate weight to each
configuration of the lattice layer. Thus, just asF ∼ ln λ0, so these functions are (for l � r � 1)
of the form f (r) ∼ κ ′e−r/ξ , where ξ = (ln λ0

λi
)−1 is the correlation length, and i ∈ &, some

index set for the spectrum of T (i.e. the spectrum is {λi |i ∈ &}). However, from (3), if f (r)
is to depend non-trivially on λi , O( ) must somehow suppress the larger contribution of λr0
in the spectrum of T r (and indeed suppress all λj with |λj | > |λi |). In practice, given an
arbitrary index scheme &, it is not obvious in general which i corresponds to which physical
correlation function.

Since T is a representation of an element of the partition algebra Pn(Q) ([32] p 211),
the irreducible representation theory of Pn(Q) gives a partial classification scheme for the
spectrum of T . However, there is no reason why the physical observable O( ) should also
be a representation of an element of Pn(Q), so determining which irreducible representation
dominates in f (r) for given  is still not necessarily trivial.

Recall ([32] ch 8, and [33]) that irreducible representations of Pn(Q) are indexed by the
number, m say, of ‘propagating lines’ and by the symmetry properties of these lines (note that
this has no obvious relationship with theQ-dependent index scheme implicit in (1)—we will
determine this relationship below). By reference to the strong coupling expansion formalism
for Potts correlation functions [18,25] these representations will give the spectrum components
corresponding to appropriately symmetrizedm spin-to-m spin correlations (providedQ� m).
To make this precise we can extendPn(Q) to a larger algebraPmn (Q), constructed so that O( )
is a representation of an element of the new algebra. The restriction rules for simple Pmn (Q)
modules to simple Pn(Q) modules can be worked out. Thus we can determine which part
of the spectrum of T r is picked up by O( ) explicitly. In section 4.2 we will illustrate with
concrete examples.

In the field theory sense, the new algebraPmn (Q) allows us to incorporate source terms [2].
The caseP 1

n (Q) also allows us to build the transfer matrix for more general boundary conditions
than usual, and/or a magnetic field (at the level of algebra the distinction between coupling to
a frozen boundary and to a field is an entirely geometrical one).

2. Algebra definitions

Let A be an algebra, and A–mod the category of finite-dimensional left A-modules. For
M ∈ A–mod define AnnA(M) = {a ∈ A|aM = 0}. Note AnnA(M) is a double sided ideal
of A. Also define CenA(M) = Centre(A/AnnA(M)), so CenA(M) ⊆ EndA(M), and define
head M as the quotient ofM by the intersection of its maximal proper submodules.

For Q ∈ N let &Q denote the set of dominant weights [17] of degree Q (also known as
partitions of Q), and write λ � Q for λ ∈ &Q. Let &n := ∪nQ=0&Q. For µ, λ ∈ &n regarded
as Young diagrams, write µ � λ if µ− λ is a skew diagram [29] of one box.

Associate a left Young symmetrizer h′λ to each dominant weight λ (cf the right Young
symmetrizer hλ in [11], p 250), then {S(λ) = CSQh

′
λ|λ ∈ &Q} is a complete set of simple left

CSQ-modules.
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2.1. Summary of the partition algebra

For M a set EM is the set of equivalence relations on M and SM the set of partitions of M
into disjoint subsets. Recall that EM has a natural bijection with SM . We will use them
interchangeably without further comment. Note that (EM,⊆) is a lattice.

Definition 1. Let ρ be any finite equivalence relation, and #(ρ) the number of equivalence
classes of ρ. For any finite setsM,N define maps

RN : EM∪N → EM\N
RN : ρ �→ (largest µ ∈ EM\N such that µ ⊆ ρ) (4)

and
CN : EM∪N → N0

CN : ρ �→ #(ρ)− #(RN(ρ))
(5)

and

• : EM × EN → EM∪N
(µ, ν) �→ µ • ν (6)

where µ • ν is the smallest ρ ∈ EM∪N s.t. ρ ⊇ µ ∪ ν (i.e. the transitive extension of µ ∪ ν).

Note that f : M → N a bijection leads naturally to a bijection Ef : EM → EN .
Let {α, β, . . .} be a finite set, then define {α, β, . . .}n = {α, β, . . .} × {1, 2, . . . , n}, and

write αi for (α, i) ∈ {α, β, . . .}n.
Let a(α, β) denote an element of E{α,β}n . Then by a(δ, γ ) ∈ E{δ,γ }n we understand

Ef (a(α, β)), where f is the isomorphism f (αi) = γi , f (βi) = δi for all i. Note that
a(α, γ ) • b(γ, β) ∈ E{α,γ,β}n .

For k a field we write kEM for the free k module with basis EM .

Definition 2 (partition algebra [34]). Let k be a field, Q ∈ k and n ∈ N. The partition
algebra Pn = kPn(Q) is a k-algebra defined as follows. It has basis E{α,β}n , i.e. it is kE{α,β}n
as a k-space, and multiplication is given by

ab = a(α, β) ∗ b(α, β) = QC{γ }n (a(α,γ )•b(γ,β))R{γ }n (a(α, γ ) • b(γ, β)). (7)

The partition algebra product is summarized by the example in figure 1. This
gives a realization of examples of partitions of {α, β}5 as clusters (specifically, a =
{{α1, α2, α3, α4}, {α5, β1, β3}, {β2}, {β4}, {β5}} and b = {{α1, β1, β2}, {α2, α3, β3}, {α4, β4},
{α5}, {β5}}) and of composition of partitions ab = Q · {{α1, α2, α3, α4}, {α5, β1, β2, β3}, {β4},
{β5}} by an appropriate juxtaposition (cf Brauer [8] p 868).

Note that Ef with f (αi) = βi, f (βi) = αi defines an isomorphism ofPn with its opposite,
P
op
n . Pn is unital and associative, and the unit element is

11 = {{α1, β1}, {α2, β2}, . . . , {αi, βi}, . . . , {αn, βn}}. (8)

Put

Ai· = {{α1, β1}, {α2, β2}, . . . {αi}, {βi}, . . . , {αn, βn}} i = 1, 2, . . . , n

Iij = {{α1, β1}, {α2, β2}, . . . {αi, βj }, {αj , βi}, . . . , {αn, βn}} i, j = 1, 2, . . . , n (9)

Aij = {{α1, β1}, {α2, β2}, . . . {αi, βj , αj , βi}, . . . , {αn, βn}} i, j = 1, 2, . . . , n.

Note forQ �= 0, that ei := Ai·
Q

and E(n)i :=∏n−i
j=1 ej ∈ Pn are idempotent, and [33] that

enPnen
∼= Pn−1 (10)

Pn/PnenPn
∼= kSn (11)
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Figure 1. Pictorial realizations of partitions and their composition (we use a vertical stacking
convention in pictures throughout).

are isomorphisms of algebras.
For x ∈ E{α,β}n define propagating number #P (x) as the number of parts of x intersecting

non-trivially with both {α}n and {β}n. Define the injectionψ : kSn → Pn(Q) as in [34], p 322
(i.e. by ψ(σi) = Iii+1).

There is a canonical left Pn-module Pn[i]′ associated to any fixed propagating number i,
given by exactness of the sequence of left modules

0 → PnE
(n)
i−1Pn ∩ PnE(n)i → PnE

(n)
i → Pn[i]

′ → 0. (12)

The module Pn[i]′ has basis

Bi = {x ∈ E{α,β}n |#P (x) = i, ∃ set y s.t. x = y ∪ {{β1}, {β2}, . . . , {βn−i}}}.

For k = C, the left idealPnE
(n)
i is a right CSi-module by the action permuting {βn−i+1, . . . , βn}.

With this action, and for each λ � i, put Sλ(n) := PnE(n)i h′λ mod PnE
(n)
i−1Pn.

The algebra injection Pn
s→ Pn+1 given on partitions by s : a �→ a ∪ {{αn+1, βn+1}} is

essentially inclusion, in the sense of Sn ⊂ Sn+1, and will be treated as such here. The injection
s makes Pnen a left Pn–right Pn−1–bimodule, so via the isomorphism in (10) there are functors

(Pn−1–mod)
G−→ (Pn–mod)

F−→ (Pn−1–mod) (13)

where F(M) = enM and G(N) = Pnen ⊗Pn−1N (respectively) are the appropriate special
cases of the functors f and h of Green [17] section 6.2 (n.b., we will use the same symbols
F,G for any n). Hence, via the isomorphism in (11), we can give the following proposition.

Proposition 1. Put k = C.

(i) For Q �= 0, the modules {Lµ(n) := head Sµ(n)|µ ∈ &n} are complete set (up to
isomorphism) of simple modules of Pn(Q). (ForQ = 0 this set is overcomplete.)

(ii) ForQ �∈ N, Pn(Q) is semi-simple (and hence each Sµ(n) is simple).
(iii) ForQ �= 0, Pn(Q) is quasi-hereditary [10] (see appendix A.3), and for each λ ∈ &n, the

module Sλ(n) is the standard left Pn(Q) module associated to λ (i.e. the module 8(λ)
in [10]).
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2.2. The new algebras Pmn

Clearly, the partition algebra construction could be used to equip any kEM with the structure
of an algebra, provided |M| is even. Now define

Em
n = {a ∈ E{α}β,n+m |αn+j ∼a βn+j∀j = 1, 2, . . . , m}

and note that R{βn+1,...,βn+m} : Em
n ↔ EL, where L = {α}n+m ∪ {β}n (i.e. with |L| = 2n +m), is

a bijection.

Proposition 2. The subspace of kPn+m(Q) with basis Em
n is a subalgebra, denoted Pmn =

kPmn (Q).

Note that s(Pn) ⊂ P 1
n .

Proposition 3.

(i) The algebraPmn is generated by the subset ofPn+m consisting of 11, Iij (i, j = 1, 2, . . . , n),
Ai· (i = 1, 2, . . . , n), Aij (i, j = 1, 2, . . . , n +m).

(ii) For m > 1, and each pair i, j with n < i < j � n + m, Aij is a central idempotent of
Pmn , and Pmn A

ij ∼= Pm−1
n .

From now on k = C unless otherwise stated. We write Pn(Q) for CPn(Q).
We will see in section 4 that theAi n+1s allow the building of an n-site Potts transfer matrix

in which spins may be coupled to a frozen boundary or, if all the Ai n+1s are used, a magnetic
field. Thus the case m = 1 is sometimes called the magnetic field algebra (and sometimes
denoted Pn+(Q)).

The left ideal P 1
n E

(n+1)
i+1 is a right CSi module by the action permuting {βn−i+1, . . . , βn}.

With this action, and for each λ � i, put module S1
λ(n) := P 1

n E
(n+1)
i+1 h′λ mod. P 1

n E
(n+1)
i P 1

n

(cf (12)). For example, a basis for S1
(1)(1) is

{{{α1}, {α2, β2}, {β1}}, {{α1, α2, β2}, {β1}}}. (14)

Note that

P 1
n = P 1

n E
(n+1)
n+1 P

1
n ⊃ P 1

n E
(n+1)
n P 1

n ⊃ · · · ⊃ P 1
n E

(n+1)
1 P 1

n (15)

—this follows from proposition 2 of [34] on noting that P 1
n E

(n+1)
i P 1

n has a basis

B(i) = {x ∈ E1
n|#P (x) � i}. (16)

3. The structure of P 1
n(Q)

Define

χ
n+1 =

( n∏
i=1

(11 − Ai n+1)

)
.

Proposition 4. Fix an integer k � 1 and putχ = χ
n+k . The composite map

χPkn (Q)χ
θ→ χPk−1

n (Q)χ =→ P k−1
n (Q− 1) (17)

where θ is the identity map and, with a ∈ E{α,β}n ,= acts onχaχ by replacing the idempotents
χ by 1, is an algebra isomorphism.
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Proof. The map θ is well defined since (
∏n
i=1(11 − Ai n+1))Aj n+1 = 0. For = we have

χAj ·χ �→ Aj · (18)

and

=((χAj ·χ)2) = =((Q− 1)(χAj ·χ)) = (=(χAj ·χ))2 (19)

and so on. �

Proposition 5. There is a Morita equivalence

P 1
n (Q)–mod ∼ME Pn(Q− 1)–mod. (20)

Proof. The Morita equivalence bimodules [22] are χP 1
n (Q) and P 1

n (Q)χ , where we use
χP 1

n (Q)χ for Pn(Q − 1). Noting proposition 4 we need only prove that there exists a
bijection

P 1
n (Q)χ

⊗
χP 1

n χ

χP 1
n (Q)

φ→ P 1
n (Q). (21)

Dlab and Ringel [13] prove that for A an algebra and e ∈ A an idempotent then the following
are equivalent:

(i) AeA is a projective left A module.
(ii) eA is a projective left eAe module, and multiplication Ae ⊗eAe eA → AeA is bijective.

Now P 1
nχ has basis isomorphic to a subset of E1

n with elements with βn+1 not connected
to any other β. It follows that P 1

nχP 1
n
∼= P 1

n as a vector space and hence as a bimodule. Thus
φ is a bijection. �

Thus by proposition 1, we can give the following proposition.

Proposition 6.

(i) For Q �= 1, the modules {L1
µ(n) := head S1

µ(n) |µ ∈ &n} are a complete set (up to
isomorphism) of simple modules of P 1

n (Q). (ForQ = 1 this set is overcomplete.)
(ii) ForQ �∈ N, P 1

n (Q) is semi-simple (and hence each S1
µ(n) is simple).

(iii) ForQ �= 1, P 1
n (Q) is quasi-hereditary [10] (see appendix A.3), and for each λ ∈ &n, the

module S1
λ(n) is the standard left P 1

n (Q) module associated to λ (i.e. the module 8(λ)
in [10]).

The dimensions of the S1
λ(n) modules are computed as follows.

Definition 3. The formal infinite matrixU with row and column positions indexed by dominant
weights (regarded as Young diagrams) in the standard order [29] is given by

Uµν =




1 µ = ν
1 µ = ν + �
0 otherwise.

where + � indicates adding a box, that is, (ν + �)− ν is a skew diagram of one box [29].

Proposition 7. The matricesU andU † are the generic global restriction matrices for modules
Sλ and S1

λ restricted via Pn+1 ⊃ P 1
n ⊃ Pn, respectively. That is

ResPn+1

P 1
n

Sλ(n + 1) ∼=
⊕
µ

(U)µλS1
µ(n) and Res

P 1
n

Pn
S1
λ(n)

∼=
⊕
µ

(U †)µλSµ(n) (22)

(in non-semisimple cases the sums may not be direct).
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1

1

1 1

2 1

2 3 1 1

5 5 1 1

5 10 6 6 1 2 1

15 22 9 9 1 2 1

15 37 31 31 10 20 10 1 3 2 3 1

Figure 2. The ‘Bratteli’ diagram for the restriction of standard modules in the tower P∗ =
P0 ⊂ P 1

0 ⊂ P1 ⊂ P 1
1 ⊂ P2 ⊂ P 1

2 ⊂ P3 . . . . The columns correspond to λ =
(0), (1), (2), (12), (3), (2, 1), (13), . . . from left to right; and each standard module Sλ (resp. S1

λ),
at each level n, is represented by its dimension.

This is an obvious refinement of the case for restriction directly from Pn+1 to Pn (see [33]).
In particular, U is lower unitriangular and begins

U =




1 0
1 1
0 1 1
0 1 0 1
0 0 1 0 1
0 0 1 1 0 1
0 0 0 1 0 0 1

· · ·




basis:




(0)
(1)
(2)
(12)

(3)
(2, 1)
(13)
...




and we have the generic simple module Bratteli diagram shown in figure 2.
Note that the complete representation theory of P 1

n (Q) for each Q ∈ C is obtained by
applying proposition 5 to the characterization of Pn(Q− 1)–mod given in [34]. For example,
consider the P 1

3 (Q) layer of the Bratteli diagram. We may determine the structure of, say,
P 1

3 (2), which is not semisimple, using the |λ|-diagram results of [34] for the algebra P3(1).
Reading from right to left in the layer, the modules S1

(13)
,S1
(2,1),S1

(3),S1
(12)

are simple, as the

corresponding P3(1)-modules are; the module S1
(2) has a maximal submodule isomorphic to

S1
(2,1), with quotient L1

(2) of dimension 9− 2 = 7; S1
(1) is simple again; and S1

(0) has a maximal
submodule isomorphic to L1

(2), with quotient of dimension

dim(L1
(0)) = 15 − (9 − 2) = 8. (23)
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We emphasize that the results obtained by this procedure completely determine the structure
of the algebra.

The structure of Pmn (Q) may be determined similarly. Put m = {1, 2, . . . , m} and regard
Em as a partition of m, so ai ∈ a is a subset of m. For each ai let ri ∈ m denote the
numerically lowest element ri ∈ ai . There is a decomposition of 1 ∈ Pmn into orthogonal
central idempotents given by

1 =
∑
a∈Em

χ
n
(a) (24)

where

χ
n
(a) =

( ∏
i,j
i∼aj

An+i n+j

)( ∏
l,k
al �=ak

(11 − An+rl n+rk )

)
.

(To see this expand the right-hand side of the trivial identity 11 = ∏
i,j
i �=j
(An+i n+j + (1 −

An+i n+j )).) In the decomposition of Pmn consequent on (24) each summand takes the form

Pmn χn
(a) ∼= P #(a)

n

∏
l,k∈#(a)
l �=k

(1 − An+l n+k)

using proposition 3(ii). A direct generalization of proposition 5 shows that the right-hand
side is Morita equivalent to Pn(Q′) for a suitable choice of Q′. We thus have the following
proposition.

Proposition 8. Equivalence classes of simple modules of Pmn are indexed by &n × Em.

An example of an explicit construction (in case P 2
2 ) is given in section 4.2.

Proposition 9. Let A be an algebra and e ∈ A a primitive idempotent. Then the image of left
module Ae in a semi-simple quotient algebra of A is either simple or zero.

Proof. The image of a primitive idempotent here is either primitive or zero. �
This may be applied (in general indirectly) to the modules Sλ, and tells us that the elements

of restriction matrices for simple modules in any tower of semi-simple quotients ofP∗(Q)must
be no bigger than in U and U †.

4. The Potts model representations

For each natural numberQ there is a ‘Potts’ representation of Pn(Q)

ρn : Pn(Q)→ End(⊗ni=1V
(i)
Q )

where each V (i)Q is a copy of the complex vector space with basis B = {1, 2, . . . ,Q} (i.e. the
possible configurations of a single Potts spin [3]). The action of Sn ⊂ Pn is to permute tensor
factors V (i)Q . That is, the usual Schur–Weyl dual to the diagonal GlQ action [44]. The actions
of Ai·, Aij are given, for example, in [32, p 211]—see also [24].

Let P be theQ2 ×Q2 matrix with row (column) index i = (i1, i2) ∈ B × B and

Pij =
{

1 (i1, i2) = (j2, j1)

0 otherwise

and let 1Q be theQ×Q unit matrix. Then for example we have

ρn(Iii+1) = 1Q ⊗ · · · ⊗ 1Q ⊗ P ⊗ 1Q ⊗ · · · ⊗ 1Q (i � n− 1)

(n− 1 factors, with P in the ith position so it acts on V (i)Q ⊗ V (i+1)
Q ).
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Proposition 10. For each y = (y1, . . . , ym) with yj ∈ {1, 2, . . . ,Q}, the representation ρn
extends to a representation ρyn of Pmn (Q) on putting ρyn (x) = ρn(x) as above for x ∈ Pn, but
adding

ρyn (A
jn+k) = 1Q ⊗ · · · ⊗ 1Q ⊗Dyk ⊗ 1Q ⊗ · · · ⊗ 1Q (j � n)

where Dl ∈ End(VQ) is in the j th position and is given by

(Dl)ab =
{

1 if a = b = l
0 otherwise

and

ρyn (A
n+k1 n+k2) =

{
ρn(0) yk1 �= yk2

ρn(11) yk1 = yk2 .

The orbits of the natural diagonal SQ action on y produce isomorphic representations.

Definition 4. For given n,Q

P̂n(Q) = Pn(Q)/AnnPn(Q)(V
⊗n
Q ) and P̂ 1

n (Q) = P 1
n (Q)/AnnP 1

n (Q)
(V ⊗n
Q ).

We will use P̂ or P̂n for P̂n(Q) where no ambiguity arises, and P̂ 1
n similarly.

For vi, vij , hi complex scalars let X ∈ P 1
n be

X =
( ∏
i∈VH

(vi11 + Ai·)
)( ∏

(i,j)∈EH

(11 + vijA
ij )

) ∏
i∈VH

(11 + (ehi − 1)Ai n+1).

Then the Potts model transfer matrix may be written in the form

T = ρyn (X ) (25)

where vi = eβi − 1, vij = eβij − 1. Here βx is the Potts coupling strength on an edge
corresponding to index x and hi is the strength of Potts coupling of site i to a magnetic
field pointing in direction y1. Note that any hypercubical lattice transfer matrix can be built
by appropriate choice of graph H . Similarly, we may construct a ‘universal’ quantum spin
Hamiltonian with parameter d:

H =
n∑
i=1

Ai· +
1

d

∑
〈i,j〉∈EH

Aij

whose spectrum contains that of all concrete Hamiltonians obtained by mapping into a
particular representation (that is, just as the appropriate image of

Hd=1 =
n∑
i=1

Ai· +
n−1∑
i=1

Ai i+1

gives the usual one-dimensional Uqsl2 invariant XXZ quantum spin chains).

4.1. The spectrum of X and the transfer matrix T
We now assume H is the complete graph. Note that T is a positive matrix for real βx , and
hence trivially a primitive matrix (matrix notations for this section are taken from Seneta [42,
section 1.1]). Recall that any primitive matrix has a unique largest magnitude eigenvalue,
which is positive, by the Perron–Frobenius theorem. In fact all the eigenvalues of T are
clearly real and non-negative, but the other multiplicities are not obvious.

On the other hand, the spectrum of T is a subset (up to multiplicities) of the spectrum of
X , and the spectrum of X is the union of the spectra of X acting on each generically simple
module of Pn (or P 1

n ). It is readily verified that the multiplicity of Sλ(n) in Pn[i]′ is dim(S(λ)).
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Proposition 11. For each i, X (βx ∈ R+, hi = 0) acts as a primitive matrix on Bi .

Proof. It is proved in [33] that for i �= n for all x1, x2 ∈ Bi , there exists z ∈ (PnA1·Pn∪{11})∩E0
n

such that x1 = zx2. Further, every such z induces a linear transformation on x ∈ Bi with non-
negative coefficients. Since every z appears in some power of X with a positive coefficient in
the given parameter regime we are done. �

Since there are at most two simples with multiplicity 1 in Pn[i]′ it follows that the largest
eigenvalue is associated to one of these. Since the corresponding eigenvector can be taken
positive we may deduce from the form of the Young symmetrizer the following.

Proposition 12. For each i, the unique largest eigenvalue of X (βx ∈ R+, hi = 0) on Pn[i]′ is
associated to the submodule S(i).
Now suppose that the corresponding eigenvector v lies in I(i), a proper submodule of S(i).
Then by elementary category theory arguments E(n)m v = 0 for sufficiently small m � i, a
contradiction of the positivity of coefficients in v. Thus, we have the following proposition.

Proposition 13. The unique largest eigenvalue of X (βx ∈ R+, hi = 0) on Pn[i]′ is associated
to the unique simple quotient of S(i).
We will shortly establish when this simple module appears in ρn.

Note that by varying the vx and hi parameters in the argument of the right-hand side of (25)
such X operators can be made to generate all the Ai· and Aij operators in Pn or P 1

n . With the
parameters regarded as indeterminate the multiplicities of irreducible representations in the
representation ρn thus determine the minimal multiplicities of the transfer matrix spectrum.
In other words, to determine the multiplicities we make the decomposition of ρn into simple
Pn(Q) modules Lµ (resp. ρyn into simple P 1

n (Q) modules L1
µ—n.b. y is a one-tuple here):

ρn
∼=
⊕
µ∈&

MQ
µ Lµ ρyn

∼=
⊕
µ∈&′

LQµL1
µ (26)

where the index set & has to be understood in terms of correlation functions, i.e. as a subset
of &n. A version of the first of these decompositions was computed by Jones [24] with &Q as
index set. Unfortunately, this gives no match to correlation functions, but we will derive the
injection J : &Q ↪→ &n which makes this match.

In the sense that high-dimensional lattices have high coordination number (and since our
layer graph is the complete graph [11] it has high coordination number) we may think of this
as a high-dimensional Potts model. Our eventual objective is to deal with (2 + 1)-dimensional
models, but this high-dimensional case is a convenient and illuminating first step.

Recall [3] that Z(v = −1) is the colouring polynomial of the corresponding graph (the
Potts model ‘lattice’). For example,

tr

( n−1∏
i=1

n∏
j=i+1

(ρn(1)− ρn(Aij ))
)
= 0 if n > Q (27)

since this trace is the number of ways of colouring the nodes of the n node complete graph
withQ colours, such that each node is coloured differently. Since all the factors in the trace’s
argument are diagonal matrices with each entry either 1 or 0 we deduce here that

n−1∏
i=1

n∏
j=i+1

(ρn(1)− ρn(Aij )) = 0 if n > Q. (28)

This will be useful shortly.
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4.2. Potts correlation functions

Let us consider the case of zero magnetic field. In terms of equation (3) the one spin-to-one
spin correlation has a layer operator of the form

O(1 spin) =




1 − 1/Q 0 · · · 0

0 −1/Q 0
...

... 0
. . . 0

0 · · · 0 −1/Q


⊗ 1Q ⊗ · · · ⊗ 1Q (29)

(this is chosen so that 〈〈T l1O(1 spin)T l−l1〉〉 = 0, removing the need for subtracted
correlations [25]). Thus in the Potts representation ρ1

n(σ(1)) = O(1 spin), where σ(1) :=
A1 n+1 − 1

Q
. We want to determine which part of the transfer matrix spectrum contributes

to the corresponding correlation function (again, in the sense of (3)). This task is complicated
by the fact that the operator is not in the zero-field transfer matrix algebra Pn(Q).

We work by passing to the generically simple ‘1 propagating line’ representation of P 1
n

(i.e. that with basis elements with #P (x) = 1 [32]). For example, let us write the basis for
S1
(1)(1) given in (14) as {((1)(2)′), ((12)′)} (here ((1)(2)′) = {{α1}, {α2, β2}{β1}}—shorthand

notation from [33, section 6.2]). A basis explicitly manifesting the restriction

Res
P 1
n

Pn
(S1
(1)(1)) = S(0)(1)⊕ S(1)(1)

(i.e. in which the transfer matrix is diagonal) is then {((1)(2)′), ((12)′)− 1
Q
((1)(2)′)}. In this

basis the representation of the observable is

R

(
A1 n+1 − 1

Q

)
=
(

0 1
Q−1
Q2

Q−2
Q

)
thus in this basis

T l1OT rOT l2
〈〈T l〉〉 ∼ 1

λl0

(
λ0 0
0 λ1

)l1 ( 0 1
Q−1
Q2

Q−2
Q

)(
λ0 0
0 λ1

)r (
0 1
Q−1
Q2

Q−2
Q

)(
λ0 0
0 λ1

)l2

=
(
( λ1
λ0
)r
Q−1
Q2 ( λ1

λ0
)r+l2

Q−2
Q

( λ1
λ0
)r+l1

Q−1
Q2

Q−2
Q

( λ1
λ0
)l1+l2 Q−1

Q2 + ( λ1
λ0
)l
(Q−2)2

Q2

)

so the long-range correlation function is dominated by ( λ1
λ0
)r as we would hope.

Consideration of the dispersion relations not withstanding, this is a workable paradigm for
all correlation functions. Suppose we wish to see correlations depending on λi rather than λ1.
If R(T ) is diagonal with λ0 in the first position and λi in the ith position, then it is sufficient
for R(O) to take any form in which its first row is zero except in the ith position.

One further example will establish the pattern. Let a, b be elements of the defining basis
of Pmn , and c the partition part of ab. Let #m(a) denote the number of propagating lines
(parts contributing to #P (a)) involving the nodes numbered n + 1, n + 2, . . . , n + m (we will
call these the higher nodes). Then #m(c) � #m(a), #m(b), and similarly for (#P − #m)(c).
Therefore, ideals of Pmn are filtered by both numbers. That is to say, there is an ideal filtration
whose sections each have basis characterized by a fixed value of #m (between 1 andm) and of
(#P − #m) (between 0 and n).

Thus in particular there is a generically simple module of P 2
2 with two propagating lines

both involving the higher nodes, called S2
(0;2)(2), with ordered basis

ε = (((1)(2)(3)′(4)′), ((12)(3)′(4)′), ((2)(13)′(4)′), ((1)(23)′(4)′), ((123)′(4)′),
((2)(3)′(14)′), ((1)(3)′(24)′), ((3)′(124)′), ((13)′(24)′), ((23)′(14)′)).
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A basis manifesting the decomposition

Res
P 2

2
P2
(S2
(0;2)(2)) = S(0)(2)⊕ 2.S(1)(2)⊕ S(2)(2)⊕ S(12)(2)

is(
ε1, ε2, ε3 − 1

Q
ε1, ε4 − 1

Q
ε1, ε5 − 1

Q
ε2, ε6 − 1

Q
ε1, ε7 − 1

Q
ε1, ε8 − 1

Q
ε2, x, x

′
)

where

x =
(

1,−1,
1 −Q

2
,

1 −Q
2

,Q− 1,
1 −Q

2
,

1 −Q
2

,Q− 1,

(Q− 2)(Q− 1)

2
,
(Q− 2)(Q− 1)

2

)
· εt

(t denotes transpose) and

x ′ = (0, 0, 1,−1, 0, 1,−1, 0,Q,−Q) · εt .
Hence

σ(2) = (1 − A12)

((
A1 n+1 − 1

Q− 2

)(
A2 n+2 − 1

Q− 2

)

+

(
A1 n+2 − 1

Q− 2

)(
A2 n+1 − 1

Q− 2

)
− 2

(Q− 1)(Q− 2)2

)
and

σ(12) =
(
A1 n+1 − 1

Q

)(
A2 n+2 − 1

Q

)
−
(
A1 n+2 − 1

Q

)(
A2 n+1 − 1

Q

)
are elements of the algebra with the required properties. On passing to the Potts representation
ρ(1,2) we find, for example withQ = 5,

O(2) diagonal with entries:




0 s1 = s2
1
2 s1 = 1, s2 = 2 or s1 = 2, s2 = 1
− 1

6 s1 ∈ {1, 2}, s2 �∈ {1, 2}
− 1

6 s2 ∈ {1, 2}, s1 �∈ {1, 2}
1
6 s1 �= s2, s1, s2 �∈ {1, 2}

O(12) diagonal with entries:




0 s1 = s2
3
5 s1 = 1, s2 = 2
− 3

5 s1 = 2, s2 = 1
1
5 s1 = 2, s2 �∈ {1, 2} or s2 = 1, s1 �∈ {1, 2}
− 1

5 s1 = 1, s2 �∈ {1, 2} or s2 = 2, s1 �∈ {1, 2}
0 otherwise.

Note, neither of these is defined unlessQ > 2, and O(2) only ifQ > 3.
These operators are somewhat complicated compared to (29), however, our construction

shows that they lead to two different types of correlation function on the states of pairs of
spins. Note that this result is consistent with traditional strong coupling formalism (cf [25]),
since above two dimensions there are two ways of connecting a pair of spins to a pair of spins.
The generalization is straightforward. For Q sufficiently large (see section 5), we have, for
λ ∈ &n, an observable layer operator Oλ with correlation function determined by the largest
eigenvalue in the λ sector. It is a correlation on |λ| to |λ| spins, with their symmetries under
permutation within the layer determined by λ. It remains now to determine which of these
correlation functions survive at a givenQ.
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4.3. Potts configuration space V ⊗n
Q as an SQ ⊗ Pn(Q) module

Define orthogonal matrices

S =




0 1
1 0
0 0 1
0 0 0 1
0 0 0 0 1

0 0 0 0 0
. . .

0 0 0 0 0 0
. . .

0 0 0 0 0 0 0 1




T =




0 1
0 0 1
0 0 0 1
0 0 0 0 1

0 0 0 0 0
. . .

0 0 0 0 0 0
. . .

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0




∈ End(VQ)

(blank entries 0) cf [32, ch 10]. Then using symmetric group cycle notation

ρ ′n((12)) = ⊗ni=1S and ρ ′n((12 . . .Q)) = ⊗ni=1T (30)

generate a representation of the symmetric group SQ on V ⊗n
Q . It is easy to check that these

matrices commute with the representation of Pn(Q) above, and that the SQ−1 ⊂ SQ which
fixes y commutes with P 1

n (Q). In fact,

CSQ
∼= EndPn(Q)(V

⊗n
Q ) and CSQ−1

∼= EndP 1
n (Q)
(V ⊗n
Q ). (31)

The first of these is proved in [24], and the second requires a straightforward generalization
of this proof. Thus ρn (resp. ρyn ) is extended by (30) to a representation of SQ ⊗ Pn(Q) (resp.
SQ−1 ⊗ P 1

n (Q)).
Note that the multiplicities of irreducible representations of SQ (or SQ−1 ⊂ SQ) in ρ ′n can

be worked out using the Clebsch–Gordan (Gamba and Radicati) rules [20, 23, 24]. Regard
k as the trivial kSQ−1-module. Then as a kSQ-module VQ = Ind

kSQ
kSQ−1

k (i.e. the permutation
module P((Q − 1, 1))). As a representation of SQ we can thus decompose ρ ′1 as a sum of
irreducibles:

ρ ′1
∼= S((Q))⊕ S((Q− 1, 1)) ∼= S ( . . . ..

)⊕ S ( . . . ..
)

(readily verified by taking traces). Then

ρ ′n
∼= ρ ′n−1 ⊗ ρ ′1 and V ⊗n

Q = Ind
kSQ
kSQ−1

V ⊗n−1
Q . (32)

We may summarize the effect of direct producting any irreducible representation S(µ) with
ρ ′1 as

S(µ)⊗ ρ ′1 ∼= Ind
kSQ
kSQ−1

(Res
kSQ
kSQ−1

S(µ)) ∼=
⊕
ν∈&Q

U(Q)γ,ν

⊕
γ∈&Q−1

U(Q)γ,µS(ν)
∼=
⊕
ν∈&Q

N(Q)µ,ν S(ν)

(33)

where U(Q)γ,µ = 1 if the Young diagram of µ is obtained from that of γ by adding a box, and is
zero otherwise; and N(Q) = (U(Q))tU(Q). We may then apply this iteratively to (32).
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For example, with Q = 4 the muliplicities of irreducibles in ρ ′n are given by the entries
of the column vector




1 0 0
1 1 0
0 1 0
0 1 1
0 0 1



( 1 1 0 0 0

0 1 1 1 0
0 0 0 1 1

)
n−1


1
1
0
0
0




= (N(4))n−1




1
1
0
0
0


 =




1 1 0 0 0
1 2 1 1 0
0 1 1 1 0
0 1 1 2 1
0 0 0 1 1



n−1


1
1
0
0
0




indexed by &4 = {(4), (3, 1), (2, 2), (2, 1, 1), (14)} (in that order). These multiplicities will
be the dimensions of the irreducible representations of the centralizer algebra EndCSQ(V

⊗n
Q ),

which is P̂n by the duality of (31). ForQ = 4 these vectors begin, with n = 1, 2, 3, 4, 5, . . .


1
1
0
0
0


 ,




2
3
1
1
0


 ,




5
10
5
6
1


 ,




15
36
21
28
7


 ,




51
136
85

120
35


 , . . . . (34)

Note, it is a simple matter so to check (23) (although note that none of the other simple
dimensions in P 1

3 (2) can be checked in this way!).

5. Irreducible content of the Potts representations

Now we determine the irreducible content of ρn in terms of correlation functions (i.e. in terms
of the index set &n).

Definition 5. With |λ|-diagrams defined as in [34]:

&nQ = {λ ∈ &n | |λ|-diagram of λ contains no λij � Q}.
Note (from proposition 9 of [34]) that &nQ is in general a proper subset of an index set for
connected components of the indecomposable projective modules quiver diagram of Pn(Q)
(cf [32] ch 8).

Proposition 14. For n > Q there is a bijection I : &nQ → &Q given by

I : λ �→ (Q− |λ|, λ1, λ2, . . .).

Proof. The definition of &nQ ensures that λ1 � Q − |λ|, and the inverse map simply deletes
the first row. �

For example

&n4 = {(0), (1), (2), (12), (13)} �→ {(4), (3, 1), (2, 2), (2, 12), (14)} = &4

(in that order).
Let P be the induction functor from Pn–mod, to P̂n–mod (any n). Thus P(ρn) = ρn.
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Proposition 15. For n > Q the Potts representation obeys

F(ρn) ∼= ρn−1 (35)

and

PG(ρn−1)
∼= G(ρn−1)/AnnPn(V

⊗n
Q ) ∼= ρn. (36)

Proof. From (28) we see that ρn(1) ∈ ρn(PnAijPn) for n > Q (any i, j ). ButAij = AijAi·Aij
so ρn(1) ∈ ρn(PnenPn) for n > Q. It follows that

ρn(Pn) = ρn(PnenPn) (n > Q). (37)

Considering (37), F and G must induce equivalence functors between P̂n–mod and P̂n−1–mod.
In particular, comparing the definition F : M �→ An·M with (48) verifies (35). �

Note by proposition 15 that the subset of &n indexing irreducible representations of
each successive P̂n after n = Q is the same, and that the multiplicity of each irreducible
representation so indexed is independent of n (once n is large enough for it to be defined)—
cf [24].

For each λ � n there is a unique non-zero CSn idempotent Yλ ∈ Ch′λhλ. We define

eλ = ψ(Yλ) ∈ Pn(Q). (38)

Recall that CSnYλ
∼= s(λ) [23], and that there exists a primitive idempotent Iλ in Pn(Q) such

that

Iλ ≡ eλ mod PnA
n·Pn (39)

and Pn(Q)Iλ −−� Sλ(n) [33]. Thus IλSλ(n) �= 0.

Proposition 16. ForQ < 2n

ρn(e(n)) ∈ ρn(PnAn·Pn).

Proof. Let K2n be the 2n node complete graph and consider any bond subgraph G of this
with the nodes arranged as two layers, each of n nodes. The colouring matrix C(G) for this
system at fixed Q is the element of End(V ⊗n

Q ) with i, j th entry 1 if spin configuration (i, j)
represents a colouring ofG, and 0 otherwise (so

∑
ij Cij (G) is the evaluation of the colouring

polynomial at Q and C(K2n) = 0 for Q < 2n). This matrix cannot in general be written as
a product of transfer matrices of the form T , but it can be written as a linear combination of
transfer matrices each modified by a permutation of the top layer of nodes, using the bond
removal algorithm for the dichromatic polynomial D(G) for graph G.

Recall that ifG−{i, j} denotesG with bond {i, j} removed andG/{i, j} denotesG with
{i, j} removed and vertices i, j identified, then

D(G) = D(G− {i, j}) + vD(G/{i, j}). (40)

In our case v = −1 and this extends by linearity to

C(G) = C(G− {i, j}) + vC(G/{i, j}). (41)

Starting from G = K2n, it requires the application of the removal algorithm to n(n− 1)/2 of
the n2 bonds of form {αi, βj } (αi in the top layer, βj in the bottom) to get a right-hand side in
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which each term is a product of transfer matrices. To see this consider

C

(
G−

n−1∑
i=1

n−i∑
j=1

{αi, βj }
)
= ρn

(( n∏
i �=j=1

(1 − Aij )
)
(−1 + An·)

( n−1∏
j=1

(1 − Anj )
)

×(−1 + An−1·)
( n−2∏
j=1

(1 − An−1j )

)
(−1 + An−2·)

×
( n−3∏
j=1

(1 − An−2j )

)
· · · (−1 + A1·)

( n∏
i �=j=1

(1 − Aij )
))
. (42)

Each of the graphs produced has at least n connections from top to bottom and hence the
argument of ρn(−) for each one is non-vanishing mod PnAn·Pn (equation (42) in particular
has argument congruent to ±1 mod PnAn·Pn). On the other hand, the original G = K2n is
invariant under the action of s(n)which permutes the top nodes, soC(K2n) has non-vanishing
coefficient of ρn(e(n)). �

For an example, consider figure 3. There, taking care of signs

A = B − C = (D − F)− E = ((G−H)− (J − L))− (I −K)
and collecting the leading terms in each of the last six diagrams respectively

A = (((−I23 + · · ·)− (I(132) + · · ·))− ((I(123) + · · ·)
−(−I13 + · · ·)))− ((I23 + · · ·)− (−11 + · · ·))

= − e(3) + · · ·
where I(123) denotes the image of the cycle (123) in P3(Q), and · · · denotes elements of
PnA

n·Pn.
By similar arguments we arrive at the more general result given in the following

proposition.

Proposition 17. For λ � n, λ �∈ &nQ then

ρn(eλ) ∈ ρn(PnAn·Pn).
A corollary is the following proposition.

Proposition 18. Let λ ∈ &n, then
(1)MQ

λ = 0 if and only if λ �∈ &nQ.

(2) LQλ = 0 if and only if λ �∈ &nQ−1.

Proof. (‘If’ parts): (1) consider λ � n. Then Sλ = Lλ, An·Lλ = 0, and IλLλ �= 0, thus by
equation (39) eλLλ �= 0. Proposition 17 implies that

eλV
⊗n
Q ⊆ PnAn·V ⊗n

Q (for λ �∈ &nQ).

Thus PneλV
⊗n
Q ⊆ PnAn·V ⊗n

Q for λ �∈ &nQ. Now suppose Lλ ↪→ V ⊗n
Q , then Lλ ↪→ PneλV

⊗n
Q

(since Lλ simple), but Lλ �↪→ PnA
n·V ⊗n

Q giving a contradiction when λ �∈ &nQ. Thus
Lλ �↪→ V ⊗n

Q for λ �∈ &nQ, and by proposition 15 Lλ �↪→ V ⊗m
Q for all m � n.

(2) Similar, but one colour fixed in the P 1
n version of proposition 17.

So far we established the ‘if’ parts. This tells us some of the rows and columns which are
lost in truncating U and U † when moving to the quotient (cf proposition 9). Suppose this is
all that is lost, then we would have the following proposition.
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I J

K L

Figure 3. Decomposition of the complete graph via (41) (ignoring the top and bottom layer) into
graphs with transfer matrix product form. The broken lines in the graphs represent identifications
of nodes, as opposed to the solid lines which are the usual graph edges.

Proposition 19. For λ ∈ &Q let SQλ
∼= LI−1(λ) be an irreducible rep of P̂n(Q). Then

ResP̂n
P̂n−1
S
Q
λ
∼=
⊕
µ�%λ

SQµ

(Note, the sum is over µs for which there exists a µ′ such that µ�µ′ %λ, so e.g. the multiplicity
of SQλ on the right-hand side is the number of distinct values of λi .)

Comparing with the Clebsch–Gordan calculation in (33) we recover (31) from this
supposition. However, if any more rows or columns are lost then this would violate (31),
thus the supposition is correct and the last two propositions are established. �

From proposition 19 the minimal spectrum multiplicities follow immediately (cf [24]).
For example, below we give M̂4, the generating matrix of the Q = 4 case P̂n+1 ⊃ P̂n Bratteli
diagram (cf alternate lines of figure 4) with its Perron eigenvector:


1 1 0 0 0
1 2 1 1 0
0 1 1 1 0
0 1 1 2 1
0 0 0 1 1






1
3
2
3
1


 = 4




1
3
2
3
1


 . (43)
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1

1

1 1

2 1

2 3 1 1

5 5 1

5 10 5 6 1

15 21 7

15 36 21 28 7

51 85 35

51 136 85 120 35

Figure 4. Bratteli diagram at Q = 4 for P̂n ⊂ P̂ 1
n ⊂ P̂n+1 up to n = 5. From left

to right the &Q indices are (4), (3, 1), (2, 2), (2, 12), (14) and the &Q−1 indices are
(3), (2, 1), (13). This should be compared with the conjunction of figure 2, proposition
9 of [34] and proposition 5 (via proposition 18). Alternate lines appear in [24].

Combining proposition 18 with proposition 13 it follows that for each non-negative integer
i � Q/2, the propagating number i sector of T has a largest eigenvalue of multiplicity exactly
dimS(I((i))), for any set of ferromagnetic couplings.

6. Discussion

To summarize: we have shown how the partition algebra formalism matches up the correlation
functions of the Potts model and the corresponding absolute spectrum degeneracies of its
transfer matrix. Briefly, the multiplicity of the analytic function corresponding tom spin-to-m
spin correlations with interchange symmetry characterized by partition λ � m is the dimension
of the irreducible representation of SQ indexed by partition (Q−m, λ1, λ2, . . .) � Q if this is
a partition (i.e. if λ1 � Q−m) and is zero otherwise.

We see that the Potts model may be characterized by the (Q − 1, 1) Young diagram,
in the sense that the maximal Potts algebra is the commutant of SQ on tensored copies of
the permutation representation with index (Q − 1, 1) [20]. This mirrors to some extent the
relationship between Uqsl2 and two-dimensional vertex models, and between O(Q) and the
Brauer algebra [8,9,21]. Here the Hopf algebra (or crucially bi-algebra) is not a q-group but a
group algebra, and the consequently greater symmetry of the form of the coproduct allows the
building of higher-dimensional models (although so far without the Yang–Baxter equation—
there may be a clue here for finding tetrahedron equations†). In a subsequent paper we will
discuss the physicality of the models arising from tensoring other representations of groups,
and from fusion!

That there is an SQ symmetry of any classical Hamiltonian of the form of (2) when hi = 0

† A ‘ramified’ form of the partition algebra has recently been proposed to pursue this point (joint work with Elgamal
and Stanley on this topic is to be reported shortly).
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is obvious. That it is the only symmetry of the corresponding transfer matrix is a phenomenon
which, in two dimensions, is only seen in the special cases Q = 2, 3 [31]. Note that our
SQ/Pn duality implies that in order to locate the Q crossover point in three dimensions it is
sufficient to locate a lowestQ value for which the absolute spectrum degeneracy differs from
that determined by this duality for any n. It is reasonable to suppose that if such a Q-value
exists the deviation should occur at a lattice size accessible by direct computation. This work
is in progress.
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Appendix. Mathematical background

Appendix A.1. Categorical context and Young subalgebras for Pn

Here we discuss an analogue of the Young subgroup theory of Sn for partition algebras, in
preparation for appendix A.2. For λ = (λ1, λ2, . . .) a dominant weight define a set

λ =
λ′1⋃
i=1

{αi}λi (44)

(so, for example, (2, 1) = {α1
1, α

1
2, α

2
1}). Let b(α1, α2, . . .) ∈ Eλ by a natural extension of

our existing notation. We can make kEλ a Pn-module for n = λi (any i) by defining a (left)
multiplication

∗i1 : Pλi × kEλ → kEλ

by

a(α, β)∗i1b(α1, α2, . . . , αi−1, αi, αi+1, . . .)

= QC{γ }n (a(αi ,γ )•b(α1,α2,...,αi−1,γ,αi+1,...))

×R{γ }n (a(α
i, γ ) • b(α1, α2, . . . , αi−1, γ, αi+1, . . .)). (45)

Indeed for anyM and λ � |M|, any bijection

f : λ→ M (46)

defines a (left) multiplication

∗if : Pλi × kEM → kEM

for each i, which makes kEM a Pλi -module. This multiplication is given by applying the
bijection Ef to the f = 1 (identity map) version above. Further

a∗if (b∗jf c) = b∗jf (a∗if c) i �= j
so that kEM is a (left)

⊗
i kPλi (Q) module.

Conversely, we will see shortly that End⊗
i kPλi (Q)

(kEM)
∼= Cen⊗

i kPλi (Q)
(kEM).
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Figure 5. Schematic (cf figure 1) for the canonical action of Pn−m ⊗ Pn+m on Pn.

Figure 6. Action of Pn ⊗ Pn+1 on P 1
n (cf (45)), and of P 1

n−1 ⊗ P 1
n on Pn.

Recall that an associative algebra A is itself an A bimodule by the left and right
multiplication in the algebra; and A ∼= EndA(A). The multiplication∗if allows us to interpret
Pn as a leftPn module in many different ways. The basic ‘left’ and ‘right’ actions are canonical
via algebra multiplication. Others may be defined by somehow specifying f .

Note from the definitions that, with Aop the opposite algebra of A,

Pn
∼= P opn P 1

n
∼= (P 1

n )
op

and hence via appropriate choices of λ in (46) we have (1) and (2) of the following proposition.

Proposition 20.
(1) For any m � n then Pn is a (left) Pn−m ⊗ Pn+m module with the action indicated by

figure 5.
(2) P 1

n is a Pn ⊗ Pn+1 module, with the action indicated in figure 6.
(3) Pn is a P 1

n−1 ⊗ P 1
n module, with the action indicated in figure 6.

In fact,Pn is obviously faithful as aPn−m module (it has the regular module as a submodule
by the inclusion Pn−m ⊂ Pn), but it is not a faithful Pn+m module. More precisely, let

en(m) =
( n+m∏
i=n−m+1

Ai·

Q

)
∈ Pn+m

then as a (left) Pn−m ⊗ Pn+m module Pn
∼= Pn+m e

n(m) (where the Pn−m action is obtained
from the P opn−m action on the right). The isomorphism is given by the map in which the image
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Figure 7. Schematic for the deformation isomorphism for (47).

of the Pn unit is

11Pn = {{α1, β1}, {α2, β2}, . . . , {αn, βn}}
�→

{{α1, β1}, . . . , {αn−m, βn−m}, {αn−m+1}, . . . , {αn+m},
{βn−m+1, βn+m}, {βn−m+2, βn+m−1}, . . . , {βn, βn+1}} (47)

(consider deforming the diagram in figure 5 as shown in figure 7). Now Pn+m e
n(m) is a (left)

projective Pn+m module (since en(m) is idempotent), and in general

AnnPn+m(Pn+m e
n(m) ) �= 0.

Finally, we get part (1) of proposition 21.

Proposition 21.
(1)

Pn+m/AnnPn+m(Pn+m e
n(m) ) ∼= EndPn−m(Pn).

(2) With respect to the ∗if action in (45)

End⊗
i �=j kPλi (kEM)

∼=



kPλj /AnnkPλj

(
kPλj

( 2λj−|M|∏
l=1

Al·
))

2λj > |M|
kPλj 2λj = |M|
kPλj + Cen⊗

i �=j kPλi (kEM) 2λj < |M|
(note the last sum is not necessarily direct).

Outline of the proof.
(1) Note that each number in the Bratteli diagram in figure 2 is the number of descending

walks from the top of the diagram to that point. Thus, for example, the (leftmost) ‘spine’
dimension at level P2n is also the dimension of the regular representation at level Pn, i.e. the
sum of the squares of the given dimensions at that level. Extending this construction we have

|Pn| =
∑
λ∈&n−m

|Sλ(n−m)| × |Sλ(n +m)|
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where |Sλ(n−m)| denotes the dimension of the generically simple Pn−m module (for example
|P3| = 203 = 2 × 15 + 3× 37 + 1× 31 + 1× 31) which proves the generic case. The general
case then follows from the known structure of the regular representation of Pn−m [34].

(2) In the extreme case in which M is partitioned with shape (1n) then all the simple
modules are one-dimensional, and inequivalent ones are indexed by possible partitions of
M (indeed, with an appropriate quotient each partition spans the corresponding simple), as
required. The remaining cases follow as above. �

Appendix A.2. A Jones basic construction on P̂∗(Q)

In this appendix we show that the P̂ algebras satisfy the requirements for a Jones basic
construction [15, 19].

Proposition 22. For all n,Q the algebras P̂n(Q) and P̂ 1
n are semi-simple over C.

Proof. It is enough to show that for each non-zero a ∈ P̂ there exists b ∈ P̂ such that ρn(ba)
is non-zero Hermitian (since then there does not exist any nilpotent ideal). But in the faithful
representation ρn the generators are all real symmetric matrices so a† = aop∗ (aop∗ is a with
generators written in reverse order and coefficients complex conjugated) and a†a is non-zero
Hermitian. �

Proposition 23. The function

trn(−) = tr(ρn(−))
is a non-degenerate trace on P̂n(Q).

(That is to say, trn(ab) = trn(ba) and for each a ∈ P̂n(Q) there exists b such that trn(ba) �= 0).

Proof. From above note that trn(a†a) > 0. �

Similarly for P̂ 1
n .

Note that trn(−) is also non-degenerate on P̂n−1 ⊂ P̂n since the restriction is

ResP̂n
P̂n−1
ρn

∼= ρn−1 ⊕ ρn−1 ⊕ · · · ⊕ ρn−1 (Q copies)

and non-degenerate on eP̂n−1 ⊂ P̂n (with idempotent e = 1
Q
An·) since

ρ(e) = 1Q ⊗ 1Q ⊗ · · · ⊗ 1Q ⊗ 1

Q
M

where the last factor may be similarity transformed to a diagonal matrix M ′ such that
(M ′)ii = δi,1, whereupon the restriction is

ResP̂n
eP̂n−1

ρn
∼= M ′ ⊗ ρn−1. (48)

Definition 6 (‘conditional expectation’). Define

εn−1 : P̂n → P̂n−1

by

trn(ba) = trn(εn−1(b)a) ∀a ∈ P̂n−1.
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Actually this is equivalent to the following construction. First define

En−1 : P̂n → eP̂n−1
∼= P̂n−1

by

En−1 : b �→ ebe = eεn−1(b) �→ εn−1(b)

then a ∈ eP̂n−1 may be written ae = ea = eae and so ba = beae, and trn(ba) = trn(beae) =
trn(ebea).

Thus

C = EndP̂n−1
(P̂n)

is a Jones basic construction [15, 19] (note here that P̂n is a double sided ideal, but P̂n−1 acts
only on the left).

Iterating from (37)

EndPn−m(Pn) ≡ Pn+m mod AnnPn+m(V
⊗n+m
Q )

(for n − m > Q) thus again from figure 5, putting m = 1 and using definition 4 and
proposition 21 we see that C ∼= P̂n+1, i.e. we have the following proposition.

Proposition 24.

P̂n+1
∼= EndP̂n−1

(P̂n). (49)

Note that the map En gives a conditional expectation on P̂ 1
n to P̂n (by restriction of the domain

from P̂n+1) so that D = EndP̂n (P̂
1
n ) is another Jones basic construction, with D ∼= P̂n+1.

Appendix A.3. Quasi-heredity

For completeness we show here the quasi-heredity property (as in Cline et al [10], Dlab and
Ringel [13]) of P 1

n (Q) explicitly.

Proposition 25 (heredity chain). ForQ �= 0 the list (E(n+1)
n+1 , E

(n+1)
n , . . . , E

(n+1)
1 ) is a heredity

chain for P 1
n (Q).

Proof. Noting (15), we require (cf [10]) to show that E(n+1)
i is a heredity idempotent modulo

P 1
n E

(n+1)
i−1 P

1
n .

This requires:

(i) that E(n+1)
i P 1

n E
(n+1)
i is semi-simple mod P 1

n E
(n+1)
i−1 P

1
n ;

(ii) that P 1
n E

(n+1)
i ⊗

E
(n+1)
i P 1

n E
(n+1)
i
E
(n+1)
i P 1

n → P 1
n E

(n+1)
i P 1

n is bijective.

Now (i) follows on noting that P 1
n E

(n+1)
i P 1

n /P
1
n E

(n+1)
i−1 P

1
n has basis {x ∈ E1

n|#P (x) = i}
but the subset preserved (up to scalars) in E(n+1)

i P 1
n E

(n+1)
i has the form

{{α1}{β1}{α2}{β2} . . . {αn−i+1}{βn−i+1} . . .}
so that all remaining components must be paired so as to contribute positively to #P . Thus
this quotient algebra is isomorphic to the group algebra over k of some permutation group on
i objects (in fact it is the symmetric group Si−1 acting on the first i − 1 of these, and acts
trivially on the last one—now recall that CSi−1 is semi-simple with simple modules indexed
by partitions of the integer i − 1, denoted λ � i − 1). Condition (ii) follows on noting that

aE
(n+1)
i ⊗ E(n+1)

i b �→ aE
(n+1)
i b

is obviously onto, and that injectivity may be proved similarly to the above permutation group
argument, using the given basis. �
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Definition 7. Let λ � i. Using Young-subgroup-style notation, Eλ;1 = E(n−i)0 ⊗ eλ⊗1 (case
P 1
n : the idempotent eλ is as defined in (38), but acts in positions αn−i+1 through αn); and
Eλ = E(n−i)0 ⊗ eλ (case Pn).

Proposition 26. A maximal heredity chain for P 1
n (Q) is obtained by replacing E(n+1)

i+1 with
Eλ(1);1, Eλ(1);1 +Eλ(2);1, . . . ,

∑k
j=1 Eλ(j);1, . . . , where λ(j) � i and the list runs over all such (in

any order).
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